Deblurring 3D Gaussian Splatting

ECCV 2024

Deblurring 3D Gaussian Splatting (ECCV 2024)

Byeonghyeon Lee, Howoong Lee, Xiangyu Sun, Usman Ali, Eunbyung Park

paper :
https://arxiv.org/abs/2401.00834
project website :
https://benhenryl.github.io/Deblurring-3D-Gaussian-Splatting/
code :
https://github.com/benhenryL/Deblurring-3D-Gaussian-Splatting

핵심 :

  1. defocus blur 구현 :
    MLP로 covariance(rotation, scaling)의 변화량을 모델링해서
    covariance를 키워서
    defocus-blurred image 얻음
  2. camera motion blur 구현 :
    MLP로 position 및 covariance의 변화량을 모델링해서
    M개의 3DGS sets를 만든 뒤
    이걸로 만든 M개의 sharp imgs를 average해서
    camera-motion-blurred image 얻음
  3. 위의 MLP를 training에서만 사용하므로
    still real-time rendering at inference
  4. sparse point clouds 보상하기 위해 points 추가
    또한 먼 거리에 있는 3DGS는 덜 prune out

Introduction

Overall Architecture

Background

Defocus Blur

Selective Blurring

Camera motion Blur

Compensation for Sparse Point Cloud

가운데는 without adding points, 오른쪽은 with adding extra points

Experiment

Results

real-world Defocus Blur Dataset
real-world Defocus Blur Dataset
synthesized Defocus Blur Dataset
synthesized Defocus Blur Dataset
real-world Camera motion Blur Dataset
real-world Camera motion Blur Dataset

Ablation Study

Extra points allocation
Depth-based pruning

Limitation and Future Work

Code Review

Question