EE534 Pattern Recognition Midterm

Lecture Summary (24F)

Lecture :
24F EE534 Pattern Recognition
by KAIST Munchurl Kim VICLab

Chapter 1. Overview

Discriminative vs Generative

Chapter 2. Bayes Decision Theory

Bayes Decision Rule

minimum error

Bayes Decision Rule w. Bayes risk

Discriminant Function for Gaussian PDF

Bayes Rule for Discrete Case

Chapter 2. Linear Transformation

Linear Transformation

Orthonormal Transformation

Whitening Transformation

Sample Separation

Chapter 3. Maximum-likelihood and Bayesian Parameter Estimation

Maximum Likelihood Estimation (MLE)

Bayesian Estimation

Principal Component Analysis (PCA)

Multiple Discriminant Analysis (MDA)

mean difference가 크지 않으면 LDA보다 PCA가 class separation 유리한 상황도 있음

Singular Value Decomposition (SVD)

Chapter 4. Non-parametric Techniques

Density Estimation

Density Estimation - Parzen window

Density Estimation - kNN method

Classification based on Parzen-window and k-NN

Direct Estimation of Posteriori

Asymptotic Analysis of NNR

증명해보자

Chapter 5. Linear Discriminant Functions

Linear Discriminant Function

General Discriminant Function

class w_1 의 training points 2개와 class w_2 의 training points 2개가 있을 때, Solution Region 찾기
margin 뒀을 때, Solution Region 찾기

Gradient Descent

원래 분홍색 boundary일 때는 y가 아래에 있어서 misclassified이었는데, 초록색 boundary로 업데이트하면 y가 위에 있어서 well-classified

Least Squared-Error Solution

Linear Support Vector Machine (Linear SVM)

KKT condition 증명 및 primal form이 min-max of U와 같은 이유 증명

Cheet Sheet for Midterm Exam