Video Segmentation


뮌헨공대 (Technical University of Munich)에서 공부한
[IN2375 Computer Vision - Detection, Segmentation and Tracking] 컴퓨터비전 노트 정리

Motion-based VOS

Motion-based VOS

장점 : fast, accurate to obtain optical flow
단점 : optical flow만으로는 occlusion 및 illumination change에 취약

assumption

  • brightness constancy : brightness in the small region remains the same
  • spatial coherence : neighboring points in 2D are in same surface, so have similar 3D moton
  • temporal persistence : motion changes gradually over time

+) assumption 1., 2. 이용해서 classic Lucas-Kanade method로 optical flow motion (u, v) 구할 수 있음

FlowNet (optical flow)

  • architecture : two images를 siamese network에 넣음
  • correlation layer : spatial similarity between two feature maps
  • refinement : deconv. 만 하는 게 아니라 upsampled prediction과 skip-connection을 더함 for high-quality upsampling

SegFlow (joint of optical flow and segment)

optical flow output과 segmentation output에 대해 둘 중 하나는 freeze하여 번갈아가며 optimize

Appearance-only VOS

Appearance-based VOS

  • 장점 : appearance라 static image로 훈련 가능 / optical flow와 달리 occlusion에 대응 가능 / simple
  • 단점 : temporal consistency (X) / slow (model을 each frame에 independently 적용 at test)

Appearance-only VOS

아이디어 : model을 each frame에 independently 적용 at test

OSVOS (One-shot VOS)

test sequence의 “first frame”에 대해 fine-tune 하여 learn which object to segment

단점 : drifting (appearance change에 적응 불가능)

OnAVOS (Online Adaptation VOS)

test sequence의 “every frame”에 대해 fine-tune 하여 online adaptation to appearance change

every frame으로부터 pseudo-label을 추출하여 annotated sample에 추가

장점 : appearance change에 적응 가능, so more accurate
단점 : slow / pseudo-label may be inaccurate

MaskTrack

MOT의 Tracktor와 비슷한 원리

perturb mask by affine transformation or non-rigid deformation -> recover original mask

Metric-based VOS (Appearance-based)

Pixel-wise Retrieval

training 필요 없이 unsupervised method로 fast

triplet loss로 fg pixel끼리는 가까이, bg pixel은 멀리 있도록 learn pixel-level embedding




    Enjoy Reading This Article?

    Here are some more articles you might like to read next:

  • FMANet
  • Object Tracking
  • SegmentAnything
  • Object Detection
  • Quantization