Semi-Supervised Learning
뮌헨공대 (Technical University of Munich)에서 공부한
[IN2375 Computer Vision - Detection, Segmentation and Tracking] 컴퓨터비전 노트 정리
Semi-supervised Learning
아이디어
use both labelled and unlabelled data
assumption
- smoothness : if two inputs are close, their labels are same
- low density : decision boundary should pass through region with low density
- manifold : data come from multiple low-dim. manifolds if data points share same manifold, their labels are same
unsupervised pre-processing
feature extraction
wrapper method 중 self-training
OnAVOS는 slow이므로 first frame/new frame 대신
offline으로 labelled/unlabelled data 사용
initial prediction이 중요하므로 미리 train strong baseline on labelled set
energy minimization (low-density assumption 적용)
minimize \(-p(x_i)logp(x_i)\) = entropy of class distribution of each pixel \(x_i\)
VAN (virtual adversarial network) (smoothness assumption 적용)
labelled set : true posterior(gt) 와 adversarial 추가한 image의 prediction 비교
unlabelled set : 기존 image의 prediction 과 adversarial 추가한 image의 prediction 비교
Domain Alignment
GAN의 원리 사용하여 unlabelled real data와 labelled synthetic data의 distribution을 비슷하게
Consistency Regularization
image에 transformation을 가하더라도 robust하게 consistent prediction을 하도록 consistency loss 추가
Enjoy Reading This Article?
Here are some more articles you might like to read next: