Semi-Supervised Learning


뮌헨공대 (Technical University of Munich)에서 공부한
[IN2375 Computer Vision - Detection, Segmentation and Tracking] 컴퓨터비전 노트 정리

Semi-supervised Learning

아이디어

use both labelled and unlabelled data

assumption

  • smoothness : if two inputs are close, their labels are same
  • low density : decision boundary should pass through region with low density
  • manifold : data come from multiple low-dim. manifolds if data points share same manifold, their labels are same

unsupervised pre-processing

feature extraction

wrapper method 중 self-training

OnAVOS는 slow이므로 first frame/new frame 대신
offline으로 labelled/unlabelled data 사용

initial prediction이 중요하므로 미리 train strong baseline on labelled set

energy minimization (low-density assumption 적용)

minimize \(-p(x_i)logp(x_i)\) = entropy of class distribution of each pixel \(x_i\)

VAN (virtual adversarial network) (smoothness assumption 적용)

labelled set : true posterior(gt) 와 adversarial 추가한 image의 prediction 비교

unlabelled set : 기존 image의 prediction 과 adversarial 추가한 image의 prediction 비교

Domain Alignment

GAN의 원리 사용하여 unlabelled real data와 labelled synthetic data의 distribution을 비슷하게

Consistency Regularization

image에 transformation을 가하더라도 robust하게 consistent prediction을 하도록 consistency loss 추가




    Enjoy Reading This Article?

    Here are some more articles you might like to read next:

  • EE534 Pattern Recognition Final
  • SegmentAnything
  • EE534 Pattern Recognition Midterm
  • FMANet
  • Object Tracking